MATH2068: Honours Mathematical Analysis II: Home Test; 2nd term

Starting: 5:00 pm, 4 April 2025

Important Notice:

The answer paper Must Be Submitted before 5:00 pm, 5 April 2025.

 \blacklozenge The answer paper MUST BE sent to the CU Blackboard.

♠ The answer paper MUST BE sent in pdf format IN ONE-file (Other format files, for example cell phone photos jpg files, are NOT ACCEPTED).

 \bigstar The answer paper must include your name and student ID.

Answer ALL Questions

(1) (20 points)

Let (J_k) be a sequence of disjoint open intervals in [0, 1]. Notice that for each n, $[0, 1] \setminus \bigcup_{k=1}^{n} J_k$ can be written as the disjoint union of closed intervals $\bigcup_{i=0}^{n} F_{n,i}$. We assume that

(a) $\lim_{n \to \infty} \max_{0 \le i \le n} |F_{n,i}| = 0$, where $|F_{n,i}|$ denotes the length of $F_{n,i}$; (b) $\sum_{k=1}^{\infty} |J_k| := r < 1$.

Let (ϕ_k) be a sequence of continuous functions defined on [0, 1] satisfying $0 < \phi_k \leq \frac{1}{2^k}$ on J_k and $\phi_k \equiv 0$ on $[0, 1] \setminus J_k$ for all k. Let $\phi := \sum_{k=1}^{\infty} \phi_k$. Define a function $h : [0, 1] \to \mathbb{R}$ by

$$h(t) = \begin{cases} 1 & \phi(t) > 0\\ 0 & \phi(t) = 0 \end{cases}$$

Show that $h \notin R[0, 1]$.

*** See Next Page ***

(2) (20 points)

Give an example of a sequence of disjoint open intervals (J_k) in [0, 1] satisfying the conditions (a) and (b) in Question (1) above. From this, shows that there are $f \in R[0, 1]$ and $\phi \in C[0, 1]$ such that $f \circ \phi \notin R[0, 1]$.

Note: we always have the fact that $f \circ \phi$ is Riemann integrable whenever f is continuous and ϕ is Riemann integrable (see the note).

*** END OF PAPER ***